
Badlog: Simple and Modular Data Logging for Robotics

Dominik Winecki, Team 1014 Bad Robot

Abstract

Robots do weird things; especially when they are built in six weeks. To perform reliably
finding the source of these problems is essential. Data logging can be the best tool in any
software teams arsenal to identify the source of a problem.

Here we present badlog: a small collection of tools to provide useful and capable data
logging while posing minimal risk to FRC teams.

The badlog Framework
The badlog framework is our solution to data logging. In short, it allows us to create interactive
HTML displays with our data. It has helped our teams during competitions and has proven to
be invaluable for identifying flaws and analyzing failures. All of our logs are hosted at https:
//badrobots1014.github.io/logs/; they serve as an example of what this system can produce.

The framework consists of of two parts: the run-time (badlog) and the visualization tools
(badlogvis). Both of these are connected with a common format for logged data (bag files). This
architecture takes inspiration from the rostopic/rosbag model used in Robot Operating System
(ROS). Because of the split, many separate use cases can be implemented.

Objectives
FRC has special requirements for logging that differ from what is seen in many other fields. These
are the objectives targeted for this system:

1. Speed and Reliability The absolute worst case scenario for any logging system is if it
interferes with the performance or function of the robot. For simplicity, there should be no
unneeded computation or writes, minimal configuration, and no networking.

2. Simplicity A FRC build happens in six weeks, and at competitions development speed often
takes precedence over quality. A simple design allows minimal interference and therefore keeps
itself running.

3. Quick Visualization Getting the data is only half the challenge and unnecessary if it goes
unused. An ideal solution would allow any team member, regardless of experience, to find
out what went wrong.

badlog logging tool
Badlog is a Java library for data logging. It can log two types of data: values and topics. Values are
any key-value string pair that is known at initialization. Topics are a constant stream of numeric
data.

Examples of values include match number, PID constants, or detected controllers. Examples
of topics include motor outputs, current draw, and gyroscope data. Each topic has a name, unit,
method to retrieve data, and attributes.

The source code for badlog is open and available at https://github.com/dominikWin/badlog

For comments, suggestions, or help with implementing this framework for your team, please feel free to contact
me directly, or reach out to any members of Team 1014.

1

https://badrobots1014.github.io/logs/
https://badrobots1014.github.io/logs/
https://github.com/dominikWin/badlog

badlogvis visualization tool
badlogvis is a visualization tool that takes bag files (or CSV files) and transforms them into readable
HTML files. It also uses different attributes to perform calculations after the fact and adds these
derived graphs. It is open source and available at https://github.com/dominikWin/badlogvis

Example usage
This is a simple walk-through of a basic application of badlog. This example shows the entire API,
and a real-world implementation is at https://github.com/BadRobots1014/BadRobot2018.

BadLog log ;

public void r obo t I n i t () {
l og = BadLog . i n i t (" t e s t . bag") ;

BadLog . createValue ("Match␣Number" ,
"" + Dr ive rSta t i on . g e t In s tance () . getMatchNumber ()) ;

BadLog . c reateTopic ("Match␣Time" , " s " ,
() −> Dr ive rSta t i on . g e t In s tance () . getMatchTime ()) ;

BadLog . c r ea t eTop i cSubsc r ibe r ("Random␣Numbers" ,
BadLog .UNITLESS, DataInferMode .DEFAULT, " i n t e g r a t e ") ;

// Subsystems can add t h e i r own t o p i c s and va l u e s
d r i v e t r a i n = new Dr ive t ra in () ;

l og . f i n i s h I n i t i a l i z a t i o n () ;
}

public void p e r i o d i c () {
BadLog . pub l i sh ("Random␣Numbers" , Math . random ()) ;

l og . updateTopics () ;
l og . l og () ;

}

This example shows the three basic types of logging that can be done.

• A value is created for the Match Number.

• A topic for Match Time is created with a lambda function to get the data at a later time.

• A subscribed topic is created for Random Numbers.

Every topic has a unit associated with it. This is only so charts can be annotated; it does not
change any calculation. The BadLog.UNITLESS constant (“ul”) is provided if needed.

Subscribed topics use a Publisher-Subscriber pattern and require instruction on what to do
when no data is provided. DataInferMode.DEFAULT uses a default value of −1 when not set.
DataInferMode.LAST uses the last set value. The infer last mode allows for potentially expensive
operations to be done less often than the general log update period. An example application of
inter last mode is for the process RAM usage where the user runs it once per second.

Attributes
In the example, the “Random Numbers” topic has a single attribute of “integrate”. Any number of
attributes can be provided for a topic. What is done with the attributes depends on the application,
the logging runtime doesn’t use their values directly. Here the “integrate” attribute is provided,
which badlogvis recognizes as an order to append an additional graph with the integral of this
topic.

2

https://github.com/dominikWin/badlogvis
https://github.com/BadRobots1014/BadRobot2018

Attributes allow for post-processors to know properties of a topic. They are a modular way to
extend this format. Some examples of ways they can be used are mathematical operations (like
badlogvis provides), hooks (like piping the data through Matlab/Python to create something else),
or setup parameters.

For example, in badlogvis, the most useful attribute has been “xaxis”. When put on a topic it
becomes the x-axis for all other graphs, and it uses the unit provided from time to have accurately
derived units for other topics. For example, if the topic for Power Draw (J) has the “integrate”
topic badlogvis will create a new graph with J · s as the unit.

Disk Space
Logged data can take up a lot of disk space. On standard FRC hardware the storage is filled up
after a few hours of constantly logging with around 50 topics. There are a few ways that the used
storage space can be decreased without losing data quality.

First, badlog uses a function for converting doubles to strings for logging (which can be set
with setDoubleToStringFunction). The length of the stored data is proportional to file size. By
default badlog uses printf format “%.5g”.

If a session has a defined x-axis for the then another option is to reduce logging frequency when
not activated. For example, if a robot is disabled, rather than logging each periodic update, the
log may only update once every 250 ms. This can be achieved by only calling the updateTopics
and log methods when needed. Old subscribed data are overwritten and all calculations using
time continue to work.

Another technique that works well is lazy initialization. By delaying the initialization procedure
until a Driver Station is connected (or, as a backup, entering non-disabled state) fewer log files
are created and more information is available to be logged. Many variables are unavailable until a
Driver Station is connected such as field orientation, controllers, and accurate system time.

Bag File Specification
Bag files are the standard way to represent log data. Their design had four goals:

1. No lock in Sometimes projects fail. In the worst case bag files can be converted to CSV.

2. Power-off tolerant The standard way to turn off an FRC robot is to kill its power supply.
Files need to survive unexpected shutdown.

3. Simple There is no need to recreate the wheel. Existing standards and technologies exist,
and they should be used.

4. One File There should never be more than one file per match. Once there are two files there
are synchronization issues, so stick to one.

CSV is the only major data format that can take a sudden cut-off so it is used for the topic
data. Values and topic meta-data are stored in a one line JSON header. This solution allows for a
bag file to be converted to a CSV file by deleting the first line while still allowing for extensibility
and a Key-Value store.

The bag file from the previous example would produce the following bag file (JSON expanded
for readability, would be one line):

{
"values": [

{
"name": "Match Number",
"value": "8"

}
],
"topics": [

{
"name": "Match Time",
"unit": "s",

3

"attrs": []
},
{

"name": "Random Numbers",
"unit": "ul",
"attrs": ["integrate"]

}
]

}

This solution solves each of the requirements. One limitation is that all of the values need to
be known at initialization so the header can be created. A fix would be to add a column with
JSON data, but this would add overhead so there is no direct support since user implementation
is trivial.

Badlogvis
Badlogvis is a program that takes bag files (or CSV) and generates HTML. It serves as a useful
tool to instantly view data and a reference implementation for a consumer of bag files. See https:
//badrobots1014.github.io/logs/ for files created with badlogvis.

Badlogvis was created with many of the same design principals of the previous standards. It is
open source and available at https://github.com/dominikWin/badlogvis.

Badlogvis Features
• One File Each output is a single HTML file. There are no external links so it can be viewed

offline. Because of this it can be used locally, shared (Slack works well), and hosted online.
The badlogvis program itself is also a one-file executable, with all dependencies embedded
within the binary.

• Interactive Selecting a time frame on one graph syncs to all graphs, and lines in graphs can
be hidden. Each graph can export an image of itself.

• Fast Outputs handle well with many hundreds of thousands of data points, even on smart-
phones, due to WebGL accelerated charts.

• AttributesMany different attributes are used to control outputs. Most common calculations
can be done after the fact, and multiple topics can be joined to a single graph. All generated
data (called virtual topics) annotated with square brackets.

• No data loss Each HTML file has a full copy of the CSV portion of the bag file that can
be downloaded. There is no reason to keep the bag files after they have been converted to
HTML.

Future Expansion
There are many additional utilities that can be created with this architecture. None of these have
been fully implemented but could be done so without much trouble.

The rosbag system that badlog was based on was designed to replay values live into different
systems, and thus this is a supported feature of badlog. Live charts can be added to match videos
to watch the data live; however, this system is not fully implemented.

Another use case (that thankfully wasn’t needed) is automated data analysis. Bag files could be
fed into a Matlab/R/Python/Julia script and automatically gather statistics or search for known
bad behavior. Badlogvis originally was intended to support calling hooks like this and embedding
their results, but this was never needed.

Team 1014 uses Java, but porting badlog to C++ would not be difficult. If a port is created
then those robots would have access to badlogvis and any other utilities.

4

https://badrobots1014.github.io/logs/
https://badrobots1014.github.io/logs/
https://github.com/dominikWin/badlogvis

